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Abstract. I present a pedagogical discussion of the influence of particle number fluctuations on the high
energy evolution in QCD. I emphasize the event-by-event description and the correspondence with the
problem of “fluctuating pulled fronts” in statistical physics. I explain that the correlations generated by
fluctuations reduce the phase space for BFKL evolution up to saturation. Because of that, the evolution
slows down, and the rate for the energy increase of the saturation momentum is considerably decreased. I
discuss the diagrammatic interpretation of the particle number fluctuations in terms of pomeron loops.
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1 Introduction

Much of the recent progress in our understanding of QCD
evolution at high energy has been triggered by the obser-
vations that
(i) the gluon number fluctuations play an important role
in the evolution towards saturation and the unitarity limit
[1,2] and
(ii) the QCD evolution in the presence of fluctuations and
saturation is in the same universality class as a series of
problems in statistical physics, the prototype of which be-
ing the “reaction–diffusion” problem [3,2,4].

These observations have developed into a profound and
extremely fruitful correspondence between QCD at high
energy and modern problems in statistical physics, which
relates topics of current research in both fields, and which
has already allowed us to deduce some insightful results
in QCD by properly translating the corresponding results
from statistical physics.

At the same time, the recognition of the importance of
fluctuations has revived the interest in the dilute regime
of QCD at high energy, which has been somehow over-
looked by the modern theory for gluon saturation, the
color glass condensate [5]. A more appropriate formal-
ism in that respect is Mueller’s “color dipole” picture [6],
which describes the gluon number fluctuations in the limit
where the number of “colors” Nc is large. In fact, it was
in the context of this formalism that Salam has first no-
ticed, through numerical simulations [7], the dramatic role
played by fluctuations in the course of the evolution.
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Thus, not surprisingly, the dipole picture occupies a
central role in the recent developments aiming at the in-
clusion of the effects of particle number fluctuations in the
non-linear evolution towards saturation [4,8,9]. Further-
more, the dipole picture will play a crucial role in the pre-
sentation we shall give here, and which is largely adapted
from [1,2,4,9].

2 The Balitsky–Kovchegov equation

The simplest physical context in which one can address the
study of gluon saturation is the collision between a small
color dipole (a quark–antiquark pair in a colorless state)
and a high energy hadron (the “target”). At high energy,
the target wavefunction is dominated by gluons, to which
couple the quark and the antiquark in the dipole. Thus, by
following the evolution of the dipole scattering amplitude
towards the unitarity limit, one can obtain information
about the evolution of the gluon distribution in the target
towards saturation.

Since the projectile has such a simple structure, it is
quite easy to deduce the equation describing the evolution
of the corresponding S–matrix with increasing energy. We
shall denote the elastic scattering amplitude as 〈T (x,y)〉τ ,
where x and y are the transverse coordinates of the quark
and the antiquark, respectively, and τ ∼ ln s is the “rapid-
ity” variable, with s the total invariant energy squared. As
we shall see, τ plays the role of an “evolution time” for the
quantum evolution with increasing energy. Now suppose
we increase τ by a small amount dτ . In order to compute
the corresponding change in 〈T 〉τ , it is more convenient
to keep the rapidity of the target fixed and put the small
change of rapidity into the elementary dipole. The latter
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Fig. 1. Diagrams for the evolution of the dipole scattering amplitude, cf. (2): a the tree-level contribution; b the virtual
correction −〈T (x, y)〉; c the scattering of one child dipole, 〈T (x, z)〉 or 〈T (z, y)〉; d the simultaneous scattering of both child
dipoles, 〈T (2)(x, z; z, y)〉

then “evolves”, that is, it has a small probability of emit-
ting a gluon due to this change of rapidity, which can be
estimated as

dP =
αsNc

2π2 M(x,y,z) d2z dτ ,

M(x,y,z) ≡ (x − y)2

(x − z)2(y − z)2
, (1)

where Nc is the number of colors and z is the transverse
coordinate of the emitted gluon. In the large-Nc limit,
to which we shall restrict ourselves in what follows, the
gluon can be effectively replaced by a zero-size qq̄ pair, and
the gluon emission appears as the splitting of the original
dipole (x,y) into two new dipoles (x,z) and (z,y).

If the emitted gluon is in the wavefunction of the dipole
at the time it scatters on the target, then what scatters is
a system of two dipoles. If the gluon is not in the wave-
function at the time of the scattering, it can be viewed
as the “virtual” term which decreases the probability that
the original quark–antiquark pair remain a simple dipole.
The whole process can be summarized into the following
evolution equation, which has been originally derived by
Balitsky [10]:

∂

∂τ
〈T (x,y)〉τ

=
ᾱs

2π

∫
z

M(x,y,z)
{ − 〈T (x,y)〉τ + 〈T (x,z)〉τ

+〈T (z,y)〉τ − 〈T (2)(x,z; z,y)〉τ

}
. (2)

This equation is illustrated with a few Feynman graphs
in Fig. 1. (For simplicity, in this figure we represent the
scattering between an elementary dipole and the target in
the two-gluon exchange approximation.)

But although formally simple, (2) is not a closed equa-
tion – it relates a single-dipole scattering amplitude to a
two-dipole one –, and the true difficulty refers to the eval-
uation of 〈T (2)〉τ . To that aim, we need some information
about the target. The simplest approximation is to assume
factorization,

〈T (2)(x,z; z,y)〉τ ≈ 〈T (x,z)〉τ 〈T (z,y)〉τ , (3)

which is a mean field approximation (MFA) for the gluon
fields in the target. This immediately yields a closed, non-

linear, equation for 〈T 〉τ :

∂

∂τ
〈T (x,y)〉τ

=
ᾱs

2π

∫
z

M(x,y,z)
{ − 〈T (x,y)〉τ + 〈T (x,z)〉τ

+〈T (z,y)〉τ − 〈T (x,z)〉τ 〈T (z,y)〉τ

}
. (4)

This is the equation originally derived by Kovchegov [11],
and is commonly referred as the “Balitsky–Kovchegov
(BK) equation”. Remarkably, this equation predicts that
the scattering amplitude should approach the unitarity
bound T = 1 in the high energy limit. By contrast, the lin-
earized version of this equation (which is the BFKL equa-
tion [12]) predicts an exponential growth of the amplitude
with τ , which would eventually violate unitarity. But, of
course, the linear approximation breaks down when the
average amplitude becomes of order one, since then the
non-linear term becomes important and restores unitar-
ity. As manifest on Fig. 1, the non-linear effects reflect
multiple scattering.

In what follows we shall be primarily interested in the
limitations of (4), coming from the factorization assump-
tion (3). The latter may be a good approximation if the
target is a large nucleus and for not very high energies,
which is the situation for which Kovchegov has originally
derived this equation. More generally, this should work
reasonably well when the scattering is sufficiently strong,
that is, when 〈T 〉τ is not much smaller than one, because
in that case the external dipole scatters off a high-density
gluonic system, and the density fluctuations are relatively
unimportant. On the other hand, the MFA cannot be right
if the scattering is very weak, because then the dipole is
sensitive to the dilute part of the target wavefunction,
where the fluctuations are, of course, essential. Still, given
that our main interest when using (4) is in the strong
scattering regime, one may expect the limitations of this
equation in the dilute regime to be inessential for the prob-
lem at hand. However, this expectation turns out to be
incorrect, and this is precisely what we would like to ex-
plain in what follows: the particle number fluctuations in
the dilute regime have a strong influence, via their subse-
quent evolution, on the approach towards saturation and
the unitarity limit.
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3 The fate of the rare fluctuations

Since the fluctuations are a priori important in the weak
scattering regime, we shall focus on the scattering of a
small dipole, with transverse size r ≡ |x − y| � 1/Qs(τ).
We have introduced here the saturation momentum Qs(τ),
which is a characteristic scale of the gluon distribution
in the target, and marks the scale at which a dipole
scattering off the target makes the transition from weak
(r � 1/Qs) to strong (r � 1/Qs) interactions. It is in fact
common to define Qs(τ) by the condition

〈T (x,y)〉τ = 1/2 for r = 1/Qs(τ) , (5)

and to use this condition together with the solution to the
BK equation (4) in order to compute the energy depen-
dence of the saturation momentum. We shall discuss more
on this in the next section.

Returning to our small external dipole, we would like
to relate its scattering amplitude to the average gluon den-
sity in the target. This is indeed possible in the dilute
regime, since then the dipole scatters only once. In fact, at
large Nc we can achieve a more symmetric description by
representing also the gluons in the target as color dipoles,
with a dipole number density n(u,v) (for dipoles with a
quark at u and an antiquark at v). The external dipole
(x,y) can scatter off any of the internal dipoles (u,v) by
exchanging two gluons. This gives

〈T (x,y)〉τ = α2
s

∫
d2u d2v A0(x,y|u,v) 〈n(u,v)〉τ , (6)

where α2
sA0(x,y|u,v) is the scattering amplitude for two

elementary dipoles. Here, we shall not need its exact ex-
pression, but only the fact that it is quasi-local both with
respect to the dipole sizes and with respect to their impact
parameters. (The impact parameter of a dipole (x,y) is
its center-of-mass coordinate b = (x + y)/2.) This allows
us to simplify (6) as

〈T (r, b)〉τ � α2
s 〈f(r, b)〉τ , (7)

where the dimensionless quantity

f(r, b) � r2
∫

Σ

d2b′ n(r, b′) (8)

is the dipole occupation number in the target, that is, the
number of dipoles with size r (per unit of ln r2) within an
area Σ ∼ r2 centered at b. Equation (7) shows that a small
dipole projectile is a very precise analyzer of the dipole
distribution in the target: the external dipoles count the
numbers of internal dipoles having the same transverse
size and impact parameter as itself.

Equation (7) applies so long as 〈T 〉τ � 1, but
by extrapolation it shows that unitarity corrections in
the dipole–target scattering become important when the
dipole occupation factor in the target becomes of order
1/α2

s . This is precisely the critical density at which satu-
ration effects – i.e., non-linear effects in the target wave-
function leading to the saturation of the gluon distribution

– are expected to occur [6]. This argument confirms that,
by studying dipole scattering in the vicinity of the unitar-
ity limit, one has access to the physics of gluon saturation.

Let us assume an initial condition like (7) at the initial
rapidity τ0 and follow the evolution of the scattering am-
plitude with increasing τ . At the beginning, the amplitude
will rise very fast, according to the BFKL equation, but
this rise will be eventually stopped by the non-linear term
〈T (2)〉τ ≡ 〈T (2)(x,z; z,y)〉τ in (2), which in the linear
regime rises even faster. We have, schematically,

〈T 〉τ � T0 eωP(τ−τ0) , 〈T (2)〉τ � T
(2)
0 e2ωP(τ−τ0) , (9)

where ωP = const. × ᾱs, T0 ≡ 〈T 〉τ0 � α2
s f0 and

T
(2)
0 ≡ 〈T (2)〉τ0 . (f0 denotes the average occupation fac-

tor at τ = τ0.) The unitarity limit is approached when
〈T (2)〉τ ∼ 〈T 〉τ , which in turn implies τ ∼ τc with

eωP(τc−τ0) ∼ T0/T
(2)
0 . (10)

So, what is the ratio T
(2)
0 /T0? If one assumes the fac-

torization property (3), then T
(2)
0 ≈ (T0)2, and therefore

T
(2)
0 /T0 ≈ T0 � α2

s f0. Then (10) implies

τc − τ0 � 1
ωP

ln
1

α2
sf0

=
1
ωP

(
ln

1
α2

s
+ ln

1
f0

)
. (11)

But is the MFA (3) a reasonable approximation for a dilute
initial condition? To answer this question, let us consider
two physical situations:
(i) f0 � 1 (with f0 � 1/α2

s though) and
(ii) f0 � 1. Also, remember that 〈T (2)(x,z; z,y)〉τ is the
scattering amplitude for two incoming dipoles (x,z) and
(z,y) which have similar impact factors (since they have
a common leg at z) and also similar sizes (since the QCD
evolution, (2), favors the splitting into dipoles with simi-
lar sizes).
(i) In the first case, the disk Σ ∼ r2 at b has a high oc-
cupancy, so the two external dipoles will predominantly
scatter off different dipoles in that disk. Then, their scat-
terings are largely independent, and the MFA is reason-
able. The result (11) can thus be trusted in this case.
(ii) The statement that the average occupation factor f0 is
much smaller than one requires an explanation. Clearly, in
a given configuration of the target, the occupation number
(8) is discrete: f = 0, 1, 2, . . . ; so, for its average value to be
smaller than one, one needs to look at rare configurations.
That is, if one considers the statistical ensemble of dipole
configurations generated by the evolution up to rapidity
τ0, then for most of these configurations f(r, b) = 0, but
for a small fraction among them, of order f0, f is non-zero
and of order one. Thus, f0 is essentially the probability to
find a dipole with the required characteristics (r, b) in the
ensemble.

Consider now the scattering problem in such a very
dilute regime: the fact that T0 ∼ α2

sf0 � α2
s means that

the incoming dipole (r, b) has a small probability f0(r, b)
to find a dipole with similar characteristics in the target,
with which it then interacts with a strength α2

s . Consider
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now two incoming dipoles, with similar sizes and impact
parameters: there is a small probability f0(r, b) to find
a corresponding dipole in the target, but whenever this
happens, both external dipoles can scatter off it, with an
overall strength α4

s . This gives T
(2)
0 ∼ α4

sf0 ∼ α2
sT0, which

is much larger than the MFA prediction T
(2)
0 ∼ (T0)2.

The scattering of the external dipoles is now strongly cor-
related. With this estimate for T

(2)
0 , (10) implies

τc − τ0 � 1
ωP

ln
1
α2

s
. (12)

For f0 � 1, this is considerably smaller than the naive
estimate (11) based on the MFA. Thus, by enhancing the
correlations in the dilute regime, the fluctuations in the
particle number significantly reduce the rapidity window
for BFKL evolution.

Moreover, at the rapidity τc at which the unitarity
corrections cut off the BFKL growth, (9) and (12) imply
〈T 〉τc ∼ 〈T (2)〉τc ∼ f0 � 1, in sharp contrast with the
prediction of the MFA! That is, the contribution that a
rare fluctuation (r, b) at τ = τ0 can give, through its sub-
sequent evolution, to the average amplitude 〈T (r, b)〉τ at
τ > τ0, saturates at a value smaller than one (of the order
of the probability f0(r, b) � 1 of the original fluctuation)
[1]. Besides, this contribution violates the factorization as-
sumption implicit in the BK equation [4].

We conclude that the correlations in the dilute regime
significantly reduce the phase space available for the
BFKL evolution of the average amplitude towards satura-
tion, by eliminating the rare fluctuations (r, b) for which
〈f(r, b)〉τ < 1, or, equivalently, for which 〈T (r, b)〉τ < α2

s
[1]. The limiting value α2

s is the elementary “quantum” for
the strength of T in the event-by-event description, that
is, the minimal non-trivial value that a physical scattering
amplitude can take in a particular event, where the dipole
number is discrete [2].

In view of this, one expects the evolution to “slow
down” as compared to the MFA. This is confirmed by
an original calculation by Mueller and Shoshi [1], which
shows that the rate for the growth of saturation momen-
tum with the energy is considerably reduced as compared
to the MFA. In the next section, we shall recover the re-
sult of [1] from a broader perspective, which establishes a
remarkable correspondence with modern results in statis-
tical physics [2].

4 Fluctuating pulled fronts

To perform a detailed study of the influence of fluctuations
on the evolution towards high density, one needs a theory
for correlations like 〈T (2)〉τ in the presence of fluctuations.
Such a theory has been recently given (within the large-Nc

approximation) [4,9,8], and we shall briefly comment on it
in the last section. But before doing that, we would like to
show that some very general results concerning the effects
of fluctuations can be deduced without a detailed knowl-
edge of the microscopic dynamics, by relying on universal
results from statistical physics [2].

Specifically, the only assumptions that we shall need
in order to derive these results are the following:
(i) the mean field description of the dynamics of 〈T 〉τ is
provided by the BK equation (4), and
(ii) in the event-by-event description, the amplitude T is
a discrete quantity, with step ∆T ∼ α2

s .
We start by summarizing those results about the BK

equation that are needed for the present purposes. We
shall neglect the impact parameter dependence of the am-
plitude, and write the corresponding solution as 〈T (r)〉τ ≡
T τ (ρ), where ρ ≡ ln(r2

0/r2) and r0 is a scale introduced
by the initial conditions at low energy. Note that small
dipole sizes correspond to large values of ρ. Thus, the am-
plitude is small, T τ (ρ) � 1, when ρ is sufficiently large:
ρ � ρ̄s(τ), where ρ̄s(τ) ≡ ln(r2

0Q̄
2
s (τ)) and Q̄2

s (τ) denotes
the saturation momentum extracted from the BK equa-
tion.

The solution T τ (ρ) can be visualized as a front which
interpolates between T = 1 (the unitarity limit) at ρ →
−∞ and T = 0 at ρ → ∞ [3]. Note that T = 1 and T = 0
are stable and, respectively, unstable fixed points of the
BK equation. The transition between the two regimes oc-
curs at ρ ∼ ρ̄s(τ); thus, the (logarithm of the) saturation
momentum plays the role of the position of the front. With
increasing τ , the saturation momentum rises very fast (ex-
ponentially in τ), so the front moves towards larger values
of ρ. One finds [13–15,3]

Q2
s (τ) � Q2

0
ecᾱsτ

(ᾱsτ)3/2γs
, (13)

where Q2
0 ∝ 1/r2

0, and c and γs are numbers fixed by the
BFKL dynamics: c = 4.88... and γs = 0.63... Equation (13)
implies the following expression for the front velocity:

λ̄(τ) ≡ dρ̄s(τ)
dτ

� cᾱs − 3
2γs

1
τ

. (14)

Its asymptotic value at large τ represents the saturation
exponent (the rate for the exponential growth of Q2

s (τ)),
here estimated in the MFA: λ̄as = cᾱs.

In the weak scattering (dilute) regime at ρ � ρ̄s(τ),
the form of the amplitude can be obtained by solving the
linearized version of (4), that is, the BFKL equation. One
thus finds [14,15,3]:

T τ (ρ) � (ρ − ρ̄s) e−γs(ρ−ρ̄s) exp
{

− (ρ − ρ̄s)2

2βᾱsτ

}
(15)

(with β � 48.2). In particular, so long as the difference
ρ − ρ̄s remains much smaller than the diffusion radius ∼√

2βᾱsτ , the Gaussian in (15) can be ignored, and the
amplitude becomes purely a function of ρ − ρ̄s(τ):

T τ (ρ) � (ρ − ρ̄s(τ)) e−γs(ρ−ρ̄s(τ)) , (16)

valid for ρ − ρ̄s � √
2βᾱsτ . This is the property referred

to as “geometric scaling” [16,14]. It means that the front
propagates without distortion, as a traveling wave [3].

Notice the mechanism leading to the front propaga-
tion: For a fixed ρ � ρ̄s(τ), the amplitude (15) rises
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1/2

ρ

 

ρ

>

1

T

τ1)(ρ

1/2
τ1

1

T

τ1τ2

Fig. 2. Evolution of the continuum
front of the BK equation with increas-
ing rapidity τ

rapidly with τ , due to the exponential factor exp(γsρ̄s) �
eωPτ with ωP = γsλ̄as; this is the BFKL instability (see
Fig. 2). Thus the front is pulled by the unstable (BFKL)
growth of its tail at large ρ. Besides, for a given (large)
distance ρ− ρ̄s ahead of the front, the amplitude increases
through diffusion from smaller values of ρ, until it reaches
the profile (16) of the traveling wave.

The fact that the front corresponding to the BK equa-
tion is a pulled front – it propagates via the growth and
spreading of small perturbations around the unstable state
T = 0 – is crucial for the problem at hand, as it shows
that the front dynamics is driven by its leading edge (the
front region where T � 1), and therefore it might be very
sensitive to fluctuations. Although this property has been
discussed here on the basis of the linear, BFKL, equa-
tion, it turns out that this is an exact property of the
non-linear BK equation [3]. Indeed, as shown by Munier
and Peschanski, the BK equation is in the same universal-
ity class as the Fisher–Kolmogorov–Petrovsky–Piscounov
(FKPP) equation [17], which appears as a mean field ap-
proximation to a variety of stochastic problems in chem-
istry, physics, and biology, and for which the pulled front
property has been rigorously demonstrated (see [18,19] for
recent reviews and more references).

Let us now return to the actual microscopic dynamics,
which is stochastic (it includes fluctuations in the number
of dipoles in the target), and where the scattering ampli-
tude (in a given event) is discrete. Then, as discussed in
the previous section, one needs to consider a statistical
ensemble of configurations which correspond to different
realizations of the same evolution. To any of these config-
urations one can associate a front Tτ (ρ), which character-
izes the scattering between that particular configuration
and external dipoles of arbitrary size ρ.

As in the mean field case, the evolution of a config-
uration is described as the propagation of the associated
front towards larger values of ρ. What is however new
is that, because of discreteness, a microscopic front looks
like a histogram: Tτ and ρ are now discrete quantities,
with steps ∆T = α2

s and ∆ρ = 1, respectively. Because of
that, the front is necessarily compact – for any τ , there is
only a finite number of bins in ρ ahead of ρs where Tτ is
non-zero (see Fig. 3) –, and this property turns out to have
dramatic consequences for the propagation of the front:

In the empty bins on the right of the front tip, the local,
BFKL, growth is not possible anymore (this would require
a seed!). Thus, the only way for the front to progress there

is via diffusion, i.e., via radiation from the occupied bins
at ρ < ρtip (see Fig. 3). But since diffusion is less effective
than the local growth, we expect the velocity of the front
– which is also the saturation exponent – to be reduced
for the microscopic front as compared to the front of the
MFA. The difference between the mechanisms for front
propagation in the MFA and in a microscopic event can
be also appreciated by comparing Figs. 2 and 3.

The extreme sensitivity of the pulled fronts to small
fluctuations has been recognized in the context of statis-
tical physics only in the recent years [20,19]. The discrete
particle version of a pulled front is generally referred to
as a “fluctuating pulled front” [18,19]. The most striking
feature of such a system is that the convergence towards
the mean field limit is extremely slow, logarithmic in the
maximal occupation number N . (For QCD, N ∼ 1/α2

s , as
explained after (8).) Specifically, if λN denotes the veloc-
ity of the microscopic front for a finite value of N , and
λ∞ is the respective velocity in the MFA (which corre-
sponds to the limit N → ∞), then for N � 1 one finds
vN � v0 − C/ ln2 N , where C is a constant.

An analytic argument which explains this slow con-
vergence and allows one to compute C has been given
by Brunet and Derrida [20]. Rather than reproducing the
original derivation from [20], we prefer to present (directly
for the case of QCD) a qualitative argument which ex-
plains the most salient feature of their result, namely its
slow convergence to the mean field limit as N → ∞.

This is related to the fact that, as mentioned before,
the microscopic front has a compact width, and therefore
its evolution is frozen in a state of “pre-asymptotic veloc-
ity” [2]. The width of the front is the distance ∆ρf = ρ−ρs
over which the amplitude Tτ (ρ) decreases from Tτ (ρs) ∼ 1
down the minimal allowed value T ∼ α2

s . This can be es-
timated from (16) as ∆ρf ∼ (1/γs) ln(1/α2

s ).
Now, from the discussion after (16) we know that the

front sets in diffusively and thus requires a formation
“time”: (15) shows that, for the front to spread over a
given distance ρ − ρs, it takes a rapidity evolution

ᾱs τ ∼ (ρ − ρs)2

2β
. (17)

Through this evolution, the velocity of the front increases
towards its asymptotic value according to (14). If the front
is allowed to extend arbitrarily far away, as it was the
case for the MFA, then the velocity will asymptotically



350 E. Iancu: Stochastic aspects of QCD at high energy

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
����
��
��
��
��

��
��
��
��
����

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
����
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

τ 1>2τ1

Τ

1

Τ

ρρ ��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��α2

s

1τ

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

Fig. 3. Evolution of the discrete front
of a microscopic event with increasing
rapidity τ . The small blobs are meant
to represent the elementary quanta α2

s
of T in a microscopic event

approach the value λ̄. However, when the front is compact,
as for the discrete system, the formation time is finite as
well, namely of the order

ᾱs∆τ ∼ (∆ρf)2

2β
∼ ln2(1/α2

s )
2β γ2

s
, (18)

which implies that the front velocity cannot increase be-
yond a value

λas � λ̄as − κ ᾱs
γsβ

ln2(1/α2
s )

. (19)

This estimate is valid when α2
s � 1. The fudge factor κ

cannot be determined by this qualitative argument, but
this is computed in [20] as κ = π2/2.

The first term in (19) is the mean field estimate
λ̄as � 4.88ᾱs. But the second, corrective, term is particu-
larly large, not only because it decreases very slowly with
α2

s , but also because its coefficient is numerically large:
π2γsβ/2 ≈ 150. Thus, although (19) becomes an exact re-
sult when α2

s is arbitrarily small, this result remains use-
less for practical applications.

5 Pomeron loops

So far, our discussion has been mostly qualitative, and the
language used was essentially that of statistical physics.
But it is also interesting to understand these results within
the more traditional language of perturbative QCD, that
is, in terms of Feynman graphs and evolution equations.
This is especially important in view of the limitations of
the correspondence with the statistical physics, which so
far has only allowed us to obtain asymptotic results (valid

when ᾱsτ → ∞ and α2
s → 0) like (19). To go beyond

these results, we need the actual evolution equations in
QCD in the presence of both fluctuations and saturation.
These equations have been constructed in the large-Nc

limit [4,8,9], by combining the Balitsky equations (or the
CGC formalism) in the high density regime with the dipole
picture in the dilute regime. To motivate the structure of
these equations, we shall first discuss the diagrammatic
interpretation of the particle number fluctuations.

We shall use, as before, the dipole picture for the tar-
get wavefunction in the dilute regime. Then, fluctuations
in the dipole number appear because of the possibility that
one dipole internal to the target splits into two dipoles in
one step of the evolution. In the discussion of (2) we have
already shown, in Fig. 1, the basic diagram for dipole split-
ting. In that discussion, the dipole appeared as the projec-
tile, and the evolution was viewed as projectile evolution
(that is, the small rapidity increment dτ was given to the
projectile). Here, we would like to visualize the relevant
fluctuations as splittings of the elementary dipoles inside
the target, and to that aim we need to perform target
evolution.

In Fig. 4 we show one step in the evolution of the tar-
get, in which one of the dipoles there – the one with
legs at u and v – has split into two new dipoles (with
coordinates (u,z) and (z,v), respectively). As further
illustrated there, the original dipole can be probed via
scattering with one external dipole (x,y), in which case
it provides a contribution to the scattering amplitude
〈T (x,y)〉τ at the original rapidity τ . After evolution, the
two child dipoles can be measured via the scattering with
two external dipoles, thus giving a contribution to the re-
spective amplitude 〈T (2)(x1,y1; x2,y2)〉τ+dτ at rapidity
τ + dτ . This is in agreement with the discussion in Sect. 3

Fig. 4. Target evolution in one step:
the original dipole (u, v) splits into two
new dipoles (u, z) and (z, v), which
then scatter off two external dipoles
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Fig. 5. Two steps in the evolution
of the average scattering amplitude of
a single dipole: the original amplitude
(left) and the pomeron loop generated
after two steps (right)

where we have seen that one needs to scatter two external
dipoles in order to be sensitive to fluctuations.

From the previous discussion, one can also understand
what should be the role of the process in Fig. 4 in the evo-
lution of the scattering amplitudes for external dipoles:
this process generates a change in the two-dipole scat-
tering amplitude 〈T (2)〉τ which is proportional to single-
dipole amplitude 〈T 〉τ .

Let us finally consider the evolution of the dipole scat-
tering amplitude 〈T 〉 after two steps. This involves several
processes, but the most interesting among them is the one
displayed in Fig. 5, which is sensitive to both fluctuations
and saturation. Specifically, the first step of the evolution
is the same as in Fig. 4: one dipole in the target wavefunc-
tion splits into two, which implies that 〈T 〉 evolves into
a 〈T (2)〉. In the second step, the 〈T (2)〉 evolves back into
a 〈T 〉, according to the non-linear term in (2). The latter
process has been already represented from the perspective
of projectile evolution in Fig. 1d. In the lower half part of
Fig. 5, this process is now represented as target evolution:
From this perspective, it describes the merging of four glu-
ons into two. Altogether, the two-step evolution depicted
in Fig. 5 generates a pomeron loop: This involves two “ver-
tices” – one for dipole splitting, the other one for gluon
merging – and two “propagators” – one for each dipole–
dipole scattering amplitude α2

sA0. An explicit expression
for this loop can be found in [21].
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